Deriving on-trip route choices of truck drivers by utilizing Bluetooth data, loop-detector data and variable message sign data

Salil Sharma (S.Sharma-4@tudelft.nl), Maaike Snelder and Hans van Lint

Delft University of Technology, The Netherlands

05-06-2019
Outline

1. Motivation and Objectives
2. Route choice modeling of truck drivers
3. Inefficiencies in routing decisions
4. Conclusions and Next steps
Motivation

• On important truck-dominated motorways, a large share of traffic consists of trucks.

• Truck driver’s routing decisions are different from passenger cars because of different constraints from the logistics system.

• Route choice of truck drivers is of interest to both transport planners and traffic management authorities.

Motivation

- On important truck-dominated motorways, a large share of traffic consists of trucks.
- Truck driver’s routing decisions are different from passenger cars because of different constraints from the logistics system.
- Route choice of truck drivers is of interest to both transport planners and traffic management authorities.
- A major problem for route choice modeling has always been the need to capture appropriate data1. The strengths and weaknesses of both stated preference (SP) and revealed preference (RP) methods are widely known.
- We enrich an RP dataset with contextual information by utilizing multiple data sources to overcome the limitations of previous RP/SP studies.

Objectives

1. To model the route choices of truck drivers using Bluetooth data, loop detector data and variable message sign data

2. To evaluate the efficiencies of routing decisions of truck drivers from both user’s and system’s perspectives
Outline

1. Motivation and Objectives
2. Route choice modeling of truck drivers
3. Inefficiencies in routing decisions
4. Conclusions and Next steps
Case study to model route choices of truck drivers between port of Rotterdam and hinterland

Study area: Rotterdam ring which provides a route choice for traffic destined to the port of Rotterdam

Node A as the origin and node B as the destination

Two paths: A16-A15 and A20-A4
Data collection

Origin-destination data: Bluetooth stations located near motorway capture the time-stamps and MAC-IDs\(^2\) of passing vehicles

Contextual information: Travel time reliability and lane closures via loop-detector data and variable-message sign data

Bluetooth data do not provide mode classification!

\(^2\)Media Access Control Address: unique hardware identification number
Infer trucks from Bluetooth data

Steps:

1. For the data collection period, find all the vehicles that have passed through a path and remove outliers.

2. Find the common vehicle Ids that belong to the slow vehicle cluster and to the path under consideration.

3. From the common vehicle Ids, select the vehicles which have traversed the path with a maximum speed of 80 km/h.

4. The vehicle Ids thus extracted can be classified as trucks.

Travel time clusters are formed between short segments of motorways because of differential speed limits observed in the Netherlands.

Slow vehicles
Fast vehicles

Bluetooth travel time observations over A15, NL between Bluetooth stations 4 and 2 on 24 November 2017

80 km/h refers to the speed limit for trucks on motorways in the Netherlands.
Model specification

Utility is specified as a linear sum of the following attributes.

- Total distance of a path (TD)
- Instantaneous travel time of a path (ITT)
- Travel time unreliability of a path ($TTUR$)
- Maximum number of lanes closed along a path (LC) as a proxy for congestion

$TTUR = \frac{T_{90} - T_{50}}{T_{50} - T_{10}}$

$TTUR$ is time of day based: morning, afternoon, evening and night.

Model specification

Utility is specified as a linear sum of the following attributes.

- Total distance of a path (TD)
- Instantaneous travel time of a path (ITT)
- Travel time unreliability of a path (TTUR)
- Maximum number of lanes closed along a path (LC) as a proxy for congestion

TTUR captures the day-to-day travel time variabilities of previous 10 working days using a skewness-based indicator\(^4\).

\[
TTUR = \frac{T_{90} - T_{50}}{T_{50} - T_{10}}
\]

TTUR is time of day based: morning, afternoon, evening and night.

Model estimation

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Binary logit</th>
<th>Mixed logit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Value</td>
<td>t-test</td>
</tr>
<tr>
<td>ITT (min)</td>
<td>Mean</td>
<td>-0.0866</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0.0197</td>
</tr>
<tr>
<td>TD (km)</td>
<td>Mean</td>
<td>-0.262</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0.512</td>
</tr>
<tr>
<td>TTUR</td>
<td>Mean</td>
<td>-0.00594</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>-0.00125</td>
</tr>
<tr>
<td>LC</td>
<td>Mean</td>
<td>-0.229</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>-0.493</td>
</tr>
<tr>
<td>Number of observations</td>
<td>1671</td>
<td>1671</td>
</tr>
<tr>
<td>Number of individuals</td>
<td>1419</td>
<td>1419</td>
</tr>
<tr>
<td>$\mathcal{L}(\beta_0)$</td>
<td>-1158.249</td>
<td>-1158.249</td>
</tr>
<tr>
<td>$\mathcal{L}(\hat{\beta})$</td>
<td>-867.758</td>
<td>-848.337</td>
</tr>
<tr>
<td>$\bar{\rho}^2$</td>
<td>0.247</td>
<td>0.261</td>
</tr>
</tbody>
</table>
Outline

1 Motivation and Objectives
2 Route choice modeling of truck drivers
3 Inefficiencies in routing decisions
4 Conclusions and Next steps
Inefficiencies in routing decisions

User-centric: choose a path with least instantaneous travel time

System-optimal: choose a path with enough spare capacity and the instantaneous travel time on it should not be worse than that of shortest time path

Spare capacity of a path: We first compute section-specific density values. A path will have spare capacity if the maximum of all such density values is less than a nominal value (i.e., 25 veh/km/lane\(^5\)).

Outline

1. Motivation and Objectives
2. Route choice modeling of truck drivers
3. Inefficiencies in routing decisions
4. Conclusions and Next steps
Conclusions

- We model route choices of truck drivers by combining RP dataset and contextual information.
- Truck drivers significantly value time, distance and lane closures for their on-trip routing decisions.
- The mixed logit model shows that the estimate of travel distance varies significantly in the population.
- 38% of truck drivers do not take the shortest time path and 48% do not make system-optimal routing decision.
- The routing efficiencies of truck drivers can be improved by utilizing traffic management solutions.
Next steps

- To add multiple OD pairs in the present framework
- To use GPS data as a revealed preference data source
- To identify latent classes of truck drivers
Acknowledgments

ToGRIP
GRIP on freight TRIPS

Logos of various organizations and companies.